Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 14(10): 1810-1825, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37158255

RESUMO

Real-time three-dimensional (3-D) imaging is crucial for quantifying correlations among various molecules under acute ischemic stroke. Insights into such correlations may be decisive in selecting molecules capable of providing a protective effect within a shorter period. The major bottleneck is maintaining the cultures under severely hypoxic conditions while simultaneously 3-D imaging intracellular organelles with a microscope. Moreover, comparing the protective effect of drugs and reoxygenation remains challenging. To address this, we propose a novel workflow for the induction of gas-environment-based hypoxia in the HMC-3 cells along with 3-D imaging using laser-scanning-confocal microscopy. The imaging framework is complemented with a pipeline for quantifying time-lapse videos and cell-state classification. First, we show an imaging-based assessment of the in vitro model for hypoxia using a steep gradient in O2 with time. Second, we demonstrate the correlation between mitochondrial superoxide production and cytosolic calcium under acute hypoxia. We then test the efficacy of an L-type calcium channel blocker, compare the results with reoxygenation, and show that the blocker alleviates hypoxic conditions in terms of cytosolic calcium and viability within an acute window of one hour. Furthermore, we show that the drug reduces the expression of oxidative stress markers (HIF1A and OXR1) within the same time window. In the future, this model can also be used to investigate drug toxicity and efficacy under ischemic conditions.


Assuntos
Cálcio , AVC Isquêmico , Humanos , Cálcio/metabolismo , Microglia/metabolismo , Hipóxia/metabolismo , Oxirredução , Oxigênio
2.
Sci Rep ; 13(1): 68, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36593323

RESUMO

We provide an automated analysis of the pigment epithelial detachments (PEDs) in neovascular age-related macular degeneration (nAMD) and estimate areas of serous, neovascular, and fibrous tissues within PEDs. A retrospective analysis of high-definition spectral-domain OCT B-scans from 43 eyes of 37 patients with nAMD with presence of fibrovascular PED was done. PEDs were manually segmented and then filtered using 2D kernels to classify pixels within the PED as serous, neovascular, or fibrous. A set of PED composition indices were calculated on a per-image basis using relative PED area of serous (PEDCI-S), neovascular (PEDCI-N), and fibrous (PEDCI-F) tissue. Accuracy of segmentation and classification within the PED were graded in masked fashion. Mean overall intra-observer repeatability and inter-observer reproducibility were 0.86 ± 0.07 and 0.86 ± 0.03 respectively using intraclass correlations. The mean graded scores were 96.99 ± 8.18, 92.12 ± 7.97, 91.48 ± 8.93, and 92.29 ± 8.97 for segmentation, serous, neovascular, and fibrous respectively. Mean (range) PEDCI-S, PEDCI-N, and PEDCI-F were 0.253 (0-0.952), 0.554 (0-1), and 0.193 (0-0.693). A kernel-based image processing approach demonstrates potential for approximating PED composition. Evaluating follow up changes during nAMD treatment with respect to PEDCI would be useful for further clinical applications.


Assuntos
Degeneração Macular , Descolamento Retiniano , Degeneração Macular Exsudativa , Humanos , Inibidores da Angiogênese/uso terapêutico , Estudos Retrospectivos , Reprodutibilidade dos Testes , Epitélio Pigmentado da Retina/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos , Acuidade Visual , Injeções Intravítreas , Descolamento Retiniano/diagnóstico por imagem , Descolamento Retiniano/tratamento farmacológico , Degeneração Macular/diagnóstico por imagem , Degeneração Macular/tratamento farmacológico , Degeneração Macular Exsudativa/tratamento farmacológico
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 4783-4786, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31946931

RESUMO

Despite providing high spatial resolution, functional imaging remains largely unsuitable for high-throughput experiments because current practices require cells to be manually identified in a time-consuming procedure. Against this backdrop, we seek to integrate such high-resolution technique in high-throughput workflow by automating the process of cell identification. As a step forward, we attempt to identify mixed retinal cells in time-lapse fluorescent microscopy images. Unfortunately, usual 2D image segmentation as well as other existing methods do not adequately distinguish between time courses of different spatial locations. Here, the task gets further complicated due to the inherent heterogeneity of cell morphology. To overcome such challenge, we propose to use a high-dimensional (HiD) version of DBSCAN (density based spatial clustering of applications with noise) algorithm, where difference in such time courses are appropriately accounted. Significantly, outcome of the proposed method matches manually identified cells with over 80% accuracy, marking more than 50% improvement compared to a reference 2D method.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência , Retina/citologia , Automação , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...